A Deformation Theorem and Some Critical Point Results for Non-differentiable Functions
نویسندگان
چکیده
A deformation lemma for functionals which are the sum of a locally Lipschitz continuous function and of a concave, proper and upper semicontinuous function is established. Some critical point theorems are then deduced and an application to a class of elliptic variational-hemivariational inequalities is presented. Introduction It is by now well known that the Mountain Pass Theorem of Ambrosetti and Rabinowitz [2, Theorem 2.1] employs fruitfully in the study of various questions concerning differential equations. This result basically applies to each case when the solutions of the problem under consideration can be regarded as critical points of a continuously differentiable real-valued functional f on a Banach space (X, ‖ · ‖), with the following property: (f) there exist x0, x1 ∈ X, r > 0, a ∈ R such that ‖x1 − x0‖ > r and max{f(x0), f(x1)} < a ≤ f(x) for all x ∈ ∂B(x0, r), where ∂B(x0, r) = {x ∈ X : ‖x− x0‖ = r}. 2000 Mathematics Subject Classification. Primary 35A15, 49J40, 35J85.
منابع مشابه
A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملSOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for ...
متن کاملNew Generalization of Darbo's Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application
In this paper, at first, we introduce $alpha_{mu}$-admissible, $Z_mu$-contraction and $N_{mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions via $alpha$-admissible simulation mappings, as well. Our results can be viewed as extension of the corresponding results in this area. Moreover, some examples and an application to funct...
متن کاملGeneralized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملA New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions
In this paper, a new stratification of mappings, which is called $Psi$-simulation functions, is introduced to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...
متن کامل